Distinct anatomical and biomechanical features of the upper limb.

Paweł KOSIOR, Damian KUSZ

Department of Orthopedics and Traumatology Medical University of Silesia
Head of Department: prof. dr hab. n med. Damian Kusz
Introduction

- shoulder anatomy & biomechanics
- proximal humerus – blood supply
 - deep branch of radial nerve
 - olecranon fixation methods – biomechanics
Shoulder anatomy & biomechanics

- **4 joints** within the Shoulder Complex that work together to allow smooth shoulder function

- **the greatest ROM** of any joint in the body

- balance between. **mobility and stability**
 - mobility - “Large ball–small socket”

- bony anatomy has been compared to a **golf ball on a tee**

- labrum - affects the distribution of contact stresses

- glenohumeral joint relies on the **static and dynamic stabilizers**, especially the **rotator cuff**:
 - stabilizes the glenohumeral joint while allowing great freedom of motion
 - fixes the fulcrum of the upper extremity against which the deltoid can contract and elevate the humerus

http://clinicalgate.com/shoulder-complex/
Shoulder anatomy & biomechanics

- **Humeral head:**
 - covered by *articular cartilage* with an arc of approximately 160 degrees
 - **superior position of humeral head** proximal to *greater tuberosity* by 8 to 10 mm (D-E)
 - the *radius of curvature*:
 - slightly larger in men than in women (+/- 25 mm)
 - 2 to 3 mm smaller than glenoid articular surface
 - larger in the ML than in the AP plane

- **Lateral humeral offset (F-H):**
 - **significant (distance) increase:**
 - reduces the lever arms for the deltoid and supraspinatus muscles
 - weakens abduction
 - impairs function
 - **significant (distance) decrease:**
 - causes excessive tension on the soft tissues
 - “overstuffing” of the joint
 - impairs function

Shoulder anatomy & biomechanics

- **Position of the glenoid surface in relation to the axis of the scapular body:**
 - From 2 degrees of anteversion to 7 degrees of retroversion

- **Proximal humeral retroversion:**
 - Highly variable (from 0 to 55 degrees)
 - Average *neck-shaft angle* is 45 degrees (±5 degrees)

Goal – restoration or re-creation of functional anatomy to reduce pain and improve function.

Problems – when reconstructible tissue is lacking or not available.

- Underlying pathologies can alter the mechanical function of the shoulder and create treatment dilemmas that are difficult to overcome.

- Inconsistent and unsatisfactory results:
 - Hemiarthroplasty
 - Glenoid grafting with total shoulder arthroplasty
Evolution of (reverse) shoulder arthroplasty

Reverse total shoulder arthroplasty in the past decades was developed to treat complex shoulder conditions not by specifically re-creating the anatomy but by using the remaining functional tissue to improve shoulder balance.

- no rotator cuff tendons:
 - few restraints to anterosuperior subluxation of humeral head when patient attempts to raise the arm
 - pull of deltoid muscle worsens this by pulling superiorly and medially

- reverse arthroplasty:
 - deltoid muscle lever arm is restored
 - allow the deltoid to compensate for the deficient rotator cuff
 - deltoid pulls the humerus upward and outward into elevation

http://medapparatus.com/Ortho/Images/JointArthroplasty/Shoulder_Arthroplasty_drawing.jpg
Evolution of (reverse) shoulder arthroplasty

Reverse total shoulder arthroplasty prostheses today vary in certain design details, although their intrinsic design remains based on Grammont’s principles.

Previous types of reverse shoulder arthroplasty /biomechanical disadvantages/:

1) lateral center or rotation (yellow dot)
2) shear forces to the glenoid component (red arrows)
3) shortened lever arm of the deltoid (dotted yellow lines)
4) design-related limited range of motion.

Grammont type of reverse shoulder arthroplasty /biomechanical principle/:

1) inherently stable prosthesis
2) weightbearing part - convex, supported part - concave
3) lowering and medialization of the center of rotation
4) center of the sphere – at or within the glenoid neck

Proximal humerus
– blood supply
- **axillary artery:**
 - **anterior circumflex artery**
 - **posterior circumflex artery**
 - both gives **ascending branch** that enters the humerus and flows retrograde (distal to proximal) into the anatomic head as the arteria arcuata.

- **arteries of the rotator cuff**
 - minimal additional arterial contribution

- **intraosseous metaphyseal artery**
 - via the humeral shaft
Hertel radiographic criteria for perfusion of humeral head

A - Metaphyseal extension of humeral head greater than 9 mm

B - Metaphyseal extension of humeral head less than 8 mm

C - Undisplaced medial hinge

D - Medial hinge with greater than 2-mm displacement.

- **type A** fractures - intact vascular supply

- **type B** fractures - possible injury to the vascular supply

- **type C** (articular) fractures - high probability of osteonecrosis

Deep branch of radial nerve
Originates from the radial nerve at the radiohumeral joint line.

Course:

1) **arcade of Frosche** at radial head (dives under supinator at arcade of Frosche)

2) **forearm posterior compartment** (winds around radial neck within substance of muscle to posterior compartment of forearm)

3) **interosseous membrane** (reaches interosseous membrane of forearm and ends as sensation to dorsal wrist capsule)

4) **dorsal wrist capsule**
Arcade of Frohse

- sometimes called the supinator arch; thickened edge of between heads of supinator
- the most superior part of the superficial layer of the supinator muscle, and is a fibrous arch over the posterior interosseous nerve

Radial nerve:

1) triceps
2) anconeus
3) ECRL
4) brachioradialis

Posterior interosseous nerve coarse

Motor innervation

Superficial extensors innervated by PIN (4)
1. Extensor digiti minimi (EDM)
2. Extensor carpi ulnaris (ECU)
3. Extensor digitorum communis (EDC)
4. Extensor carpi radialis brevis (ECRB)

Deep extensors innervated by PIN(5)
5. Extensor indicis
6. Extensor pollicis brevis (EPB)
7. Extensor pollicis longus (EPL)
8. Abductor pollicis longus (APL)
9. Supinator

Sensory innervation

A. Dorsal capsule of the wrist

Radial Head Lateral / Posterolateral / Kocher Approach

- **Incision:**
 - based off the lateral epicondyle and extending distally over the radial head

- **Superficial dissection:**
 - plane between ECU and anconeus distally

- **Deep dissection:**
 - maintain arm in pronation to move PIN away from field
 - split proximal fibers of supinator
 - incise capsule longitudinally

- **PIN not in danger** as long as:
 - dissection remains proximal to annular ligament
 - release supinator along posterior radius border beyond annular ligament with forearm in full pronation

Olecranon fixation methods – biomechanics

Most olecranon fractures are displaced and require surgery.
Excision

- One study demonstrated that removal of as little as 12.5% of the olecranon is sufficient to alter joint stability.

- An et al. suggested that up to 50% of the olecranon can be removed without rendering the elbow completely unstable.

- However, it has also been reported that up to 75% of the olecranon can be removed without creating gross instability [1]
 - If distal surface of semilunar notch of ulna & coronoid are not injured.

Tension Band Wiring (TBW)

- purported to create compression at the articular end of an olecranon fracture when the dorsal cortex is tensioned under flexion of the elbow

- biomechanical studies have not been able to demonstrate the conversion of tensile forces to compression forces [1]

- 78% of the patients treated with intramedullary K-wires were found to have instability of K-wires, compared to 36% in the patients treated with transcortical K-wires [2]

Plate-and-Screw Fixation

- provides the overall stability

<table>
<thead>
<tr>
<th>LCP vs TBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>• significantly greater compression than TBW in the treatment of transverse olecranon fractures</td>
</tr>
<tr>
<td>• precontoured plates provide greater compressive force at the fracture site for transverse olecranon fractures comparing to TBW (Wilson et al.) [1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable Angle-LCP vs LCP Hook Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• significantly higher biomechanical stability in the fixation of unstable olecranon fractures</td>
</tr>
</tbody>
</table>

Multidirectional locking intramedullary nailing

- sustained significantly higher maximum loads than the locking plates.

- no significant differences in fragment control or number of cycles survived

- surgeons can expect the multidirectional locking nails to stabilize comminuted fractures at least as well as locking plates [1]

References

8. https://www2.aofoundation.org/wps/portal/!ut/p/a1/

11. https://www.shoulderdoc.co.uk/images/uploaded/neer_parts.jpg
Thank you for your attention